

GLIMR: A geostationary sensor for a dynamic coastal ocean

Maria Tzortziou (CCNY/CUNY and NASA/GSFC), GLIMR Mission Applications Lead Woody Turner (NASA HQs), GLIMR Program Applications Lead

Applied Science: What is unique in

Hyper-Spectral

340-1040 nm; <5 to <10 nm resolution across UV-VIS <5 nm sampling UV-VIS

High Temporal

6x/day (~hourly) GoM 2x-3x/day elsewhere 3x/day HAB target sites

High Spatial

- 300 m nadir Ground Sample Distance, GSD
- 328 m Gulf of Mexico
- <500 m over coastal continental US
- > 420 in UV
 >1000, 400-580 nm
 >750, 580-650 nm
 >580, 650-712 nm
 >500, 713-890 nm

High SNR

Quote from NASA Panel Review: "GLIMR fills significant gaps in the current suite of ocean color sensors. Current NASA ocean color missions do not provide **the temporal and spatial resolution necessary** to describe processes in the dynamic coastal zone."

Applied Science: What is unique in GLIMR

2.Field Campaigns

3. Engineering and Calibrations

5.International researcher requests

4.US researcher requests

te

de

Hyper-Spectral	High Temporal	GLIMR 1 st Applications	
340-1040 nm; <5 to <10 nm resolution across UV-VIS <5 nm sampling UV-VIS	6x/day (~hourly) GoM 2x-3x/day elsewhere 3x/day HAB target sites	What GLIMR capa would be more useful fo	
		High spectral	
 High Spatial 300 m nadir Ground Sample Distance, GSD 328 m Gulf of Mexico <500 m over coastal continental US 	High SNR > 420 in UV >1000, 400-580 nm >750, 580-650 nm >580, 650-712 nm >500, 713-890 nm	High temporal + spatial + spectral 1% High temporal + spatial 4% High temporal + spectral	
QL Special Request Pri QL 1.Disaster and Emerge <i>ga</i> • Federally Declared CL • Threshold Violation	<u>orities</u> ency Acquisitions Disasters is (HABs, oil, etc.)	nt High temporal 8%	

~350 participants Workshop

ability r your work?

GLIMR Apps Workshop

GLIMR: Data Products

"Typical" Ocean Color Products

Remote sensing reflectance (360 to 720nm every 15 or 10 nm @ 5 nm steps)

Spectral diffuse attenuation coefficients

Apparent visible wavelength

Spectral absorption coefficients (a_t, a_p, a_{ph}, a_{cdm}, a_g) and backscatter coefficients (380 to 680 nm)

CDOM Spectral slope coefficients

Chlorophyll-a

Phytoplankton pigments

Phytoplankton community composition

Daily and instantaneous PAR

Fluorescence line height

Euphotic depth

Particulate organic carbon

Dissolved organic carbon

Suspended particulate matter

Particle size distribution

Rates and Flux Products

Net primary production (NPP)

Net community production of POC

Fluxes of SPM, POC and DOC

Surface Ocean Currents

Applied Science Products

Turbidity, Water clarity

HAB detection index

Karenia brevis cell count index

Mycrocystis cell count index

Floating algae biomass

Water type classification

Water Quality Indicators (e.g., CDOM quality)

Petroleum detection and thickness

Oil density

GLIMR Applications Team

- EPA water quality & lakes
- NOAA NOS harmful algal blooms and water quality
- NOAA NMFS fisheries
- US Navy water quality
- NASA food security
- **USF** oil spills and nuisance floating algae
- **CCNY** water quality
- LDEO harmful algal blooms

GLIMR: Synergies with other missions

Hyperspectral PACE & SBG Missions ACME – Aquatic Cross Mission Exchange Working Group

What are the **Opportunities** for synergies across Missions Pre-launch (2022-2024)?

- Collection of **new hyperspectral datasets** shared across missions
- Development of common algorithms and data products across three science teams
- Shared working groups to better characterize aquatic biodiversity in terms of phytoplankton community composition
- Shared methods for calculating and distributing **Uncertainties** for products
- o Joint efforts to conduct Vicarious Calibration and Product Validation
- o Established methods to distribute and use "big data"

JGR Biogeosciences

RESEARCH ARTICLE 10.1029/2023JG007574

Synergies Between NASA's Hyperspectral Aquatic Missions PACE, GLIMR, and SBG: Opportunities for New Science and Applications

Special Section: The Earth in living color: spectroscopic and thermal imaging of the Earth: NASA's Decadal Survey Surface Biology and Geology Designated Observable

H. M. Dierssen¹ ⁽⁶⁾, M. Gierach² ⁽⁶⁾, L. S. Guild³ ⁽⁶⁾, A. Mannino⁴ ⁽⁶⁾, J. Salisbury⁵ ⁽⁶⁾, S. Schollaert Uz⁶ ⁽⁶⁾, J. Scott⁷ ⁽⁶⁾, P. A. Townsend⁸ ⁽⁶⁾, K. Turpie⁹ ⁽⁶⁾, M. Tzortziou^{10,11} ⁽⁶⁾, E. Urquhart⁴, R. Vandermeulen¹², and P. J. Werdell⁴ ⁽⁶⁾

Synergies paper

GLIMR: Synergies with other missions

Hyperspectral PACE & SBG Missions ACME – Aquatic Cross Mission Exchange Group

What are the **Opportunities** for synergies across Missions with a constellation Post-launch (> 2028)

- Assessment of algorithm performance (and applications tools) across a wider range of conditions.
- Measurements of atmospheric parameters from PACE with polarimetry could inform **atmospheric correction** of other missions.
- Measurements of diurnal variability from GLIMR will be valuable to quantify uncertainties in match-ups with field datasets across all missions.
- Improved spatial resolution (SBG and GLIMR) can be used to evaluate within satellite pixel variability (for GLIMR and PACE)
- Study processes **across the continuum** of inland-coastal-marine environments
- Potential monitoring of **events at different phases of development** and environmental forcing (in coastal waters and open ocean).
- Monitoring of hazards and events that require high spatial/temporal/spectral resolutions, a combination of different datasets, products.

GLIMR: Synergies with other missions

Global Constellation of Geo-stationary Sensors

KIOST GOCI / GOCI-II Satellite Series – Launch 2020

Products: Ocean color (multi-spectral remote sensing reflectance, water inherent optical properties, biogeochemical variables) and atmospheric products

EUMETSAT Meteosat Satellite Series / SEVIRI and FCI

Products: Ocean color (suspended sediments, light attenuation, chlorophyll-a, water quality parameters) and atmospheric products

NOAA GOES-R – 2017 and GeoXO – Launch 2032 Geostationary Extended Observations

Products: Agriculture, fire, health, oceans, weather

NASA TEMPO (EVI-1) – Launch 2022 Tropospheric Emissions: Monitoring of Pollution

Products: Aerosol products (e.g., AOD, AAOD, AI), cloud products, atmospheric trace gases (e.g., O₃, NO₂, SO₂, H₂CO, C₂H₂O₂).

Opportunities for Synergies discussed in May 2023 at the 2023 Joint Science Meeting for TEMPO, GeoXO ACX, & TOLNet

GLIMR: Other multidisciplinary applications & products

- Land applications/land surface reflectance
- **NDVI** (normalized difference vegetation index)
- Wetland extent/vegetation properties
- **o** Coastal inundation
- Land-ocean biogeochemical exchanges

- Synergies/Improve utilization of other sensors
- Provide additional model inputs
- Validate regional **weather/climate models**
- Improve storm surge modeling

- Nitrogen Dioxide (NO2)
- Absorbing aerosols
- Air Quality Index and other atm. applications
- Air-Sea exchanges

- **MAAs** (Mycosporine-like Amino Acids)
- Pathogens in urban waters

GLIMR Applied Science: Activities

Phase A-B: Community Assessment to identify and engage user Communities of Practice and Potential, receive initial feedback on data products and their delivery.

1. INTRODUCTION

What is this professional review?

This review is designed to characterize the NASA GLIMR (Geostationary Littoral Imaging and Monitoring Radiometer) mission user community in terms of its composition, activities, remote sensing needs, and research interests. We will use this to plan outreach and applications before GLIMR launches in order to tailor them to <u>your</u> needs as part of the future GLIMR user community and help enhance the society value of the mission.

Why are we asking you to complete this questionnaire?

As a professional in the field, you have been identified as someone with insight into how GLIMR data can be used and applied. We are interested in how you plan to use GLIMR data in your work. Your answers will help NASA anticipate the scope of GLIMR science and applications as well as the socioeconomic impact of future GLIMR products.

If you would like further information about this questionnaire, please contact Maria Tzortziou by e-mail at maria.a.tzortziou@nasa.gov.

2. INSTRUCTIONS

- For open-ended questions, please constrain your thoughts to 1000 characters.
- Unless otherwise indicated, make only one choice per multiple-choice item. Please choose the answer that most closely matches your situation.
- The response "NA" means "not applicable" or "not appropriate." Please choose this
 response only in cases where you feel that the subject matter of the question is
 unrelated to your work. Some questions do not have a "not applicable" alternative.
- When you provide an 'other' answer, we will categorize this answer in the analysis of the results.

Thank you for your time and attention in helping NASA improve how we engage with the mission user community!

GLIMR Applied Science: Activities

Phase A-B: Community Assessment to identify and engage user Communities of Practice and Potential, receive initial feedback on data products and their delivery.

Phase C: Development of an updated Applications Traceability Matrix (ATM) for GLIMR

Phases C-E: Engage and inform user communities

about GLIMR capabilities, products, and applications foci areas during GLIMR-relevant workshops, meeting sessions, webinars

Phases C-E: Engage Early Adopters (e.g., EPA, NOAA, NRL) to provide specific input on GLIMR data products and integration into application tools, develop white papers and link to other relevant satellite missions (e.g., resource management, decision making)

Applications SAT Matrix

developed with input from the user community

GLIMR Applications Traceability Matrix (ATM)

Agency	Applications	Satellite products	Spatial requirements	Temporal requirements
NOAA	Habitat assessment, fisheries management, water quality, HABs , ecological forecasting, pollution monitoring, coral health, acidification	Chlorophyll, Rrs($\lambda)$, abs($\lambda)$, HABs, K_{490},K_{PAR}	100m – 4km	3hrs - daily
EPA	Sustainable coastal resources; air, climate and energy research; healthy and sustainable coastal communities	$ \begin{array}{l} Chlorophyll, Rrs(\lambda), abs(\lambda), \\ abs(cdom, phy, det), HABs, SPM, \\ K_{490}, K_{PAR} \mbox{ and more} \end{array} $	<250m to 500m	0.5 – 3hrs
EPA	Pathogen detection, indicators, modeling	Turbidity, salinity proxies, etc	<250m to 500m	1 – 3hrs
EPA	Oil Spill monitoring in rivers, lakes, estuaries and coastal waters	Visible/true color imagery	<250m to 500m	0.5-1 hr
US Navy	Surface currents, instrument assessments, bathymetry, visibility, coastal oceanography, navigation	Chlorophyll, Rrs(λ), abs(λ), abs(cdom, phy, det), bbp(λ), HABs, SPM, K ₄₉₀ , K _{PAR} currents	250m – 1km	1hr - daily
Gulf of Mexico Fishery Mgmt Council	Habitat quality, fisheries conservation , coral conservation	Chlorophyll, NPP, currents	Not specified	Not specified
BOEM	Ecological models, sediment transport, current trajectory, oil detection and thickness	Chlorophyll, NPP, currents, cdom, SPM	Not specified	Not specified
U.S. Army Corps of Engineers	Coastal & Inland Water Quality Monitoring and Forecasting (including HAB detection and monitoring), Nearshore Benthic Habitat Mapping to Support Coastal Operations and Planning	Chl-a, phycocyanin, CDOM, turbidity, CDOM, green laser reflectance, hyperspectral Rrs, bottom type characterization, habitat change detection	5 to 50 m	daily (WQ), monthly- seasonal (mapping)

White Papers

One-page fact sheets highlighting specific applications concepts

Community Survey

to characterize user communities, and use user feedback to plan outreach and applications

esponse only in cases where you feel that the subject matter of the question is inrelated to your work. Some questions do not have a "not applicable" alternative. When you provide an 'other' answer, we will categorize this answer in the analysis of he results.

une results. Thank you for your time and attention in helping NASA improve how we engage with the mission user community!

Maria Tzortziou (CCNY/CUNY, NASA/GSFC) NASA PACE DPA-Oceans Lead NASA GLIMR Applied Science Lead

maria.a.tzortziou@nasa.gov 212-650-5769 | @mtzortziou

