

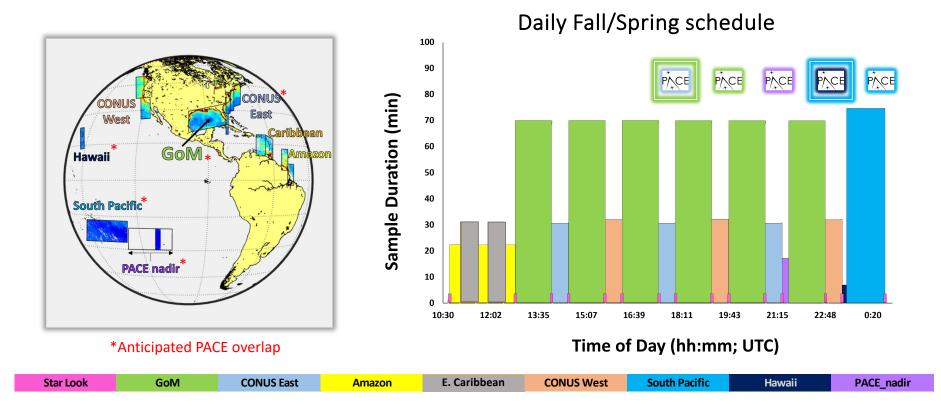
Bridging instrument and science capabilities and performance

> IOCS 2023 SAT Meeting 14 November

> > Antonio Mannino

Contributions from: Steve Persh, Ryan Vandermeulen, Sean Bailey & Boryana Efremova

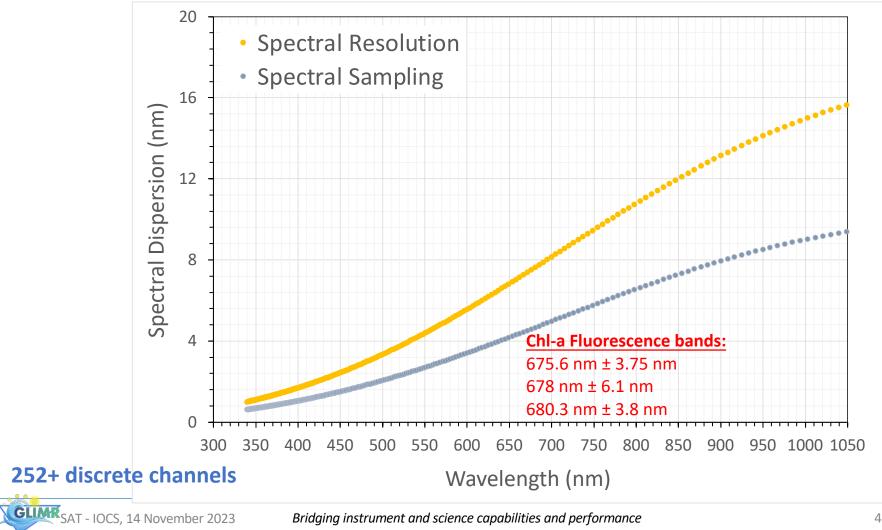
Outline



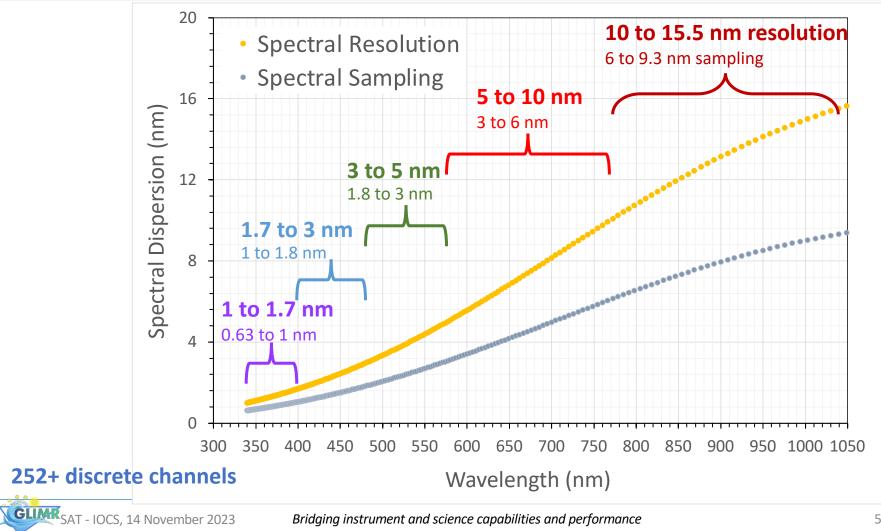
- Instrument capabilities and expected performance
 - Daily science operations and calibrations
 - Spectral
 - SNR
 - Radiometric uncertainties
- On-orbit calibration
- SLIMR Data Product Science Performance & Modeling (ρ_w)
- Validation of Science Data Products
- Peak into Cloud statistics
- Science Data Segment Algorithm Tool

Raytheon Technologies

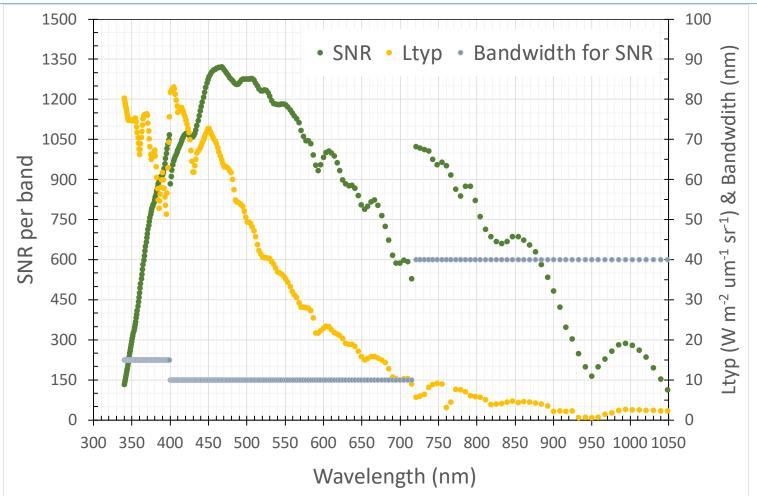
GLIMR SAT - IOCS, 14 November 2023


Daily Observing & Calibration Science Operations GODDARD

Schedule affords up to 5-7 daily matchup areas with PACE OCI year-round


Raytheon Technologies NASA Modeled GLIMR Spectral Sampling and Resolution GODARD

NH


Raytheon Technologies NASA Modeled GLIMR Spectral Sampling and Resolution GODARD

NH

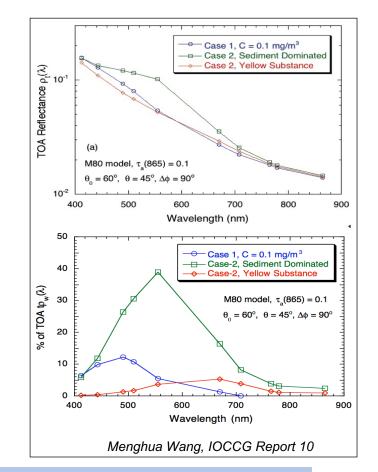
Modeled SNR as of June 2023

GLINK SAT - IOCS, 14 November 2023 Bridge

Bridging instrument and science capabilities and performance

NASA

DDARD


GLIMR

AT - IOCS. 14 November 2023

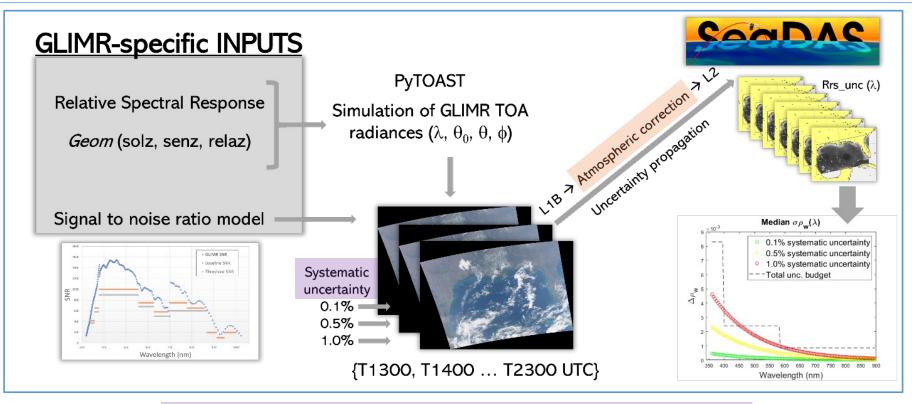
Ocean Color Heritage Requirements

- Historically, the required performance goal for ocean color products (specifically, water-leaving radiance or reflectance) is 5% uncertainty.
 - Top-of-Atmosphere (TOA) radiance requirement ascribed to ocean color instruments is typically 0.5% uncertainty.
 - Goal for GLIMR is to achieve ~0.5% uncertainty in TOA radiances in UV-Vis after vicarious calibration

Small uncertainties at TOA have potentially large impacts on downstream products.

Modeled TOA Radiometric Uncertainties – End-Of-Life CODARD

_	Ocean Color			Atmospheric Correction			
	350-400	400-580	580-720	720-895	895-970	970-1040	Basis-of-Estimate
Goal uncertainty (%) – 1 sigma	0.5	0.5	0.5	0.5 to 1.13	3.0	1 2.0	Heritage ocean color for UV-Vis; NIR: from PACE OCI CBE + 20% as its EOL baseline
Instrument On-Orbit Radiometric Uncertainty Estimate (%)	0.485	0.438	0.518	1.12	3.02	1.93	Note: error terms summed by RSS for each header section (3 sections and at top level)
Gain and Linearity Uncertainties							RSS of K1, K2, K3, K5 and dn uncertainty terms; Radiometric stability, Temp., Linearity, dark counts
K1: Absolute/ Vicarious Gain	0.20	0.10	0.10	0.696	2.11	1.67	Heritage; best option; based on PACE OCI uncertainty of vicarious calibration (340-720 nm) and absolute solar calibration (>720 nm)
Image Artifact Uncertainties							RSS of unc. from Stray light, high-contrasts, crosstalk, OOB, non-uniformity
Polarization Sensitivity Residuals							


GLIME SAT - IOCS, 14 November 2023

GLIMR SAT - IOCS, 14 November 2023

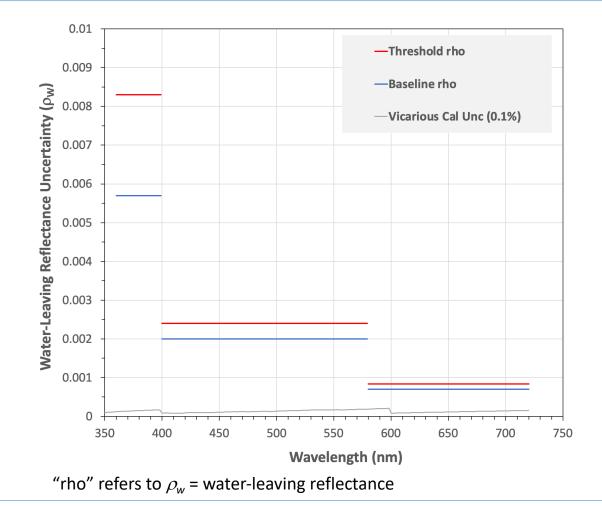
Science Data Product Performance Modeling Overview

Systematic Uncertainty: instrument + vicarious calibration uncertainties

Science Data Product Modeling follows the approach implemented for PACE OCI

Technologies Science Data Product Performance ρ_w – Vicarious Calibr Godard

Requirements

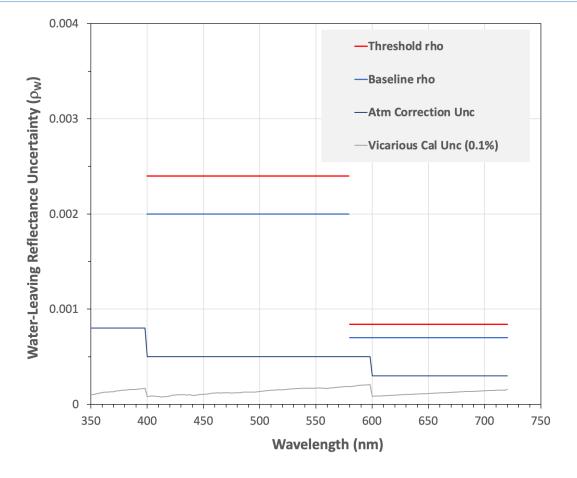

NH

 Apply to bandwidths of 15 nm (or 10 nm over Fluorescence)

Assumptions

- Vic-Cal system(s) for PACE OCI adds 0.1% uncertainty
- Estimated at 0.2% for bands <400 nm

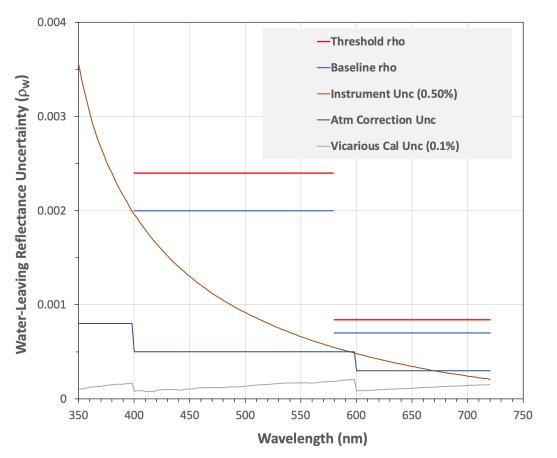
GLIMR SAT - IOCS, 14 November 2023


Science Data Product Performance ρ_w – Atmos Corr

Assumptions

 Applying current heritage Atmospheric Correction Algorithm (MSEPS: Multi-Scattering Epsilon)

GLIMR SAT - IOCS, 14 November 2023


Science Data Product Performance ho_w – Instrument

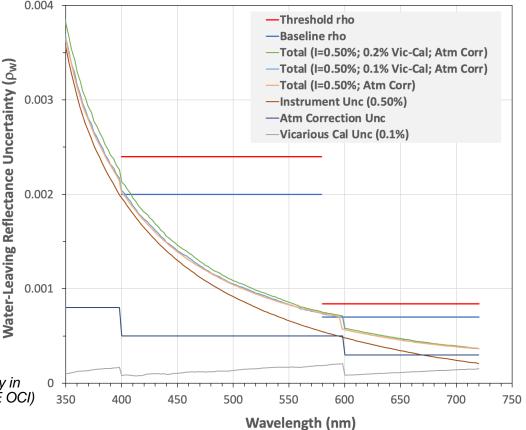
Assumptions

- Instrument uncertainty modeling follows PACE OCI (PyTOAST) but adapted to GLIMR (geometries)
- GLIMR CBE SNR
- 0.5% Radiometric Systematic Uncertainty attributed to instrument only (Raytheon's precision requirement at EOL)
 - Accounts for all instrument artifacts (T, polarization, stray light, non-linearity, crosstalk, drift, flat field uniformity, etc.)
 - Scenario for entire Gulf of Mexico

GLIMR SAT - IOCS, 14 November 2023

NOTE: (1) 0.69% Radiometric Systematic Uncertainty attributed for reference NIR band (870 nm) used to determine AOT as this band is not vicariously calibrated. (2) Approach follows PACE OCI's rigorously peer-reviewed (PRs, PDR, CDR, SIR, PSR) modeling and analysis

Science Data Product Performance ρ_w – Total



Assumptions

- Instrument uncertainty modeling follows PACE OCI (PyTOAST) but adapted to GLIMR (geometries)
- GLIMR CBE SNR
- 0.5% Radiometric Systematic Uncertainty attributed to instrument (Raytheon's precision requirement at EOL)
- Added Vicarious Calibration & Atmospheric Correction to instrument on top of instrument uncertainty
- Scenario for deep ocean subset of Gulf of Mexico

GLIMR SAT - IOCS, 14 November 2023

No change in performance when model with 2% uncertainty in NIR reference band (from 0.69% relative value from PACE OCI)

PLRA Threshold Requirements Fully Met and Baseline Met with Minor Exceptions

Daily Cloud-Free Observations by Season

- GOES-East ABI Cloud mask from 2020.
 - ✓ Angular sampling distance: 56 microradia
 - ✓ Time resolution: 30 mir
 - ✓ Subsatellite longitude 75W

The number of cloud-free observations per day are averaged over each season.

by Boryana Efremova

GLIMR SAT - IOCS, 14 November 2023

Ż 5 3 # Observations Bridging instrument and science capabilities and performance

Daily Cloud-free Spring-average

100°W

40°N

35°N

30°N

25°N

20°N

40°N

35°N

30°N

25°N

20°N

100°W

2

100°W

Observations

Daily Cloud-free Fall-average

1

100°W

80°W

40°N

35°N

30°N

20°N

15°N

40°N

35°N

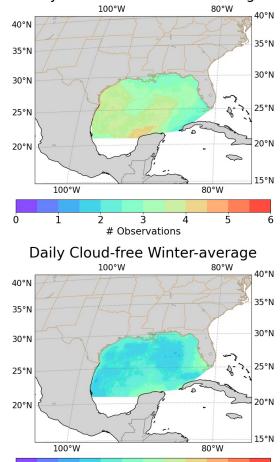
30°N

20°N

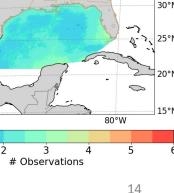
15°N

8-31 25°N

5


80°W

0-7. 25°N


80°W

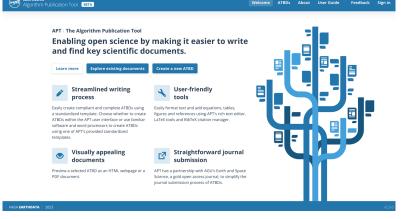
5

80°W

Daily Cloud-free Summer-average

Technologies Science Data Segment "news"

APT (Algorithm Publication Tool)


Raytheon

- APT is the "new" ATBD. While still • in beta, it is available and anyone considering an algorithm should get an account and use APT to satisfy the ATBD requirement.
- https://www.earthdata.nasa.gov/apt/
- SOT/SOB process (Science Operations Team/Board) \geq
 - As the algorithms mature, we'll want the PIs to engage with the ۲ SOB/SOT process to get the algorithm into production.
 - The earlier the engagement the better.

15

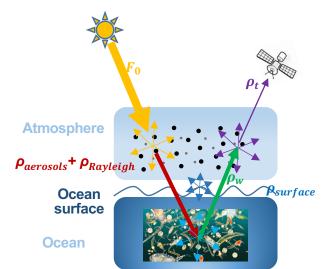
BACKUP

- Validation with data products from other satellite missions
 - PACE OCI, Sentinel 3A/3B/3C/3D OLCI, NOAA-20/21 VIIRS, etc.
- AERONET-OC (SeaPRISM) <u>https://aeronet.gsfc.nasa.gov/new_web/ocean_color.html</u>
- NASA SeaBASS <u>https://seabass.gsfc.nasa.gov/</u> (ESDS-supported)
 - NASA and other field data collections
 - e.g., NASA supports collection of up to 3000 pigment samples annually
 - Perform GLIMR validation matchups and uncertainty estimation
- HYPERNETS <u>http://www.hypernets.eu/from_cms/summary</u>
- Other federal/state/local government agencies; universities; etc.

VALIDATION APPROACH – Follow heritage and PACE methodologies

GLIMR must rely on other sources of in situ data as field validation efforts were descoped at KDP-C

Cross-(Vicarious) Calibration with OCI



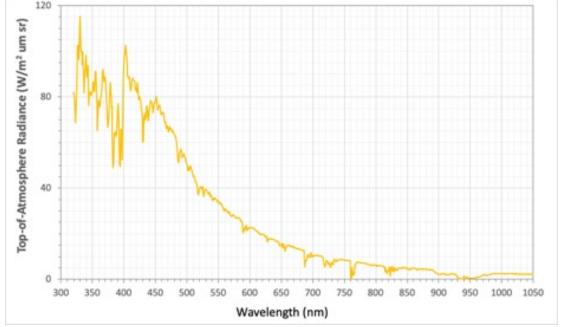
Following methods for polarization sensitive instrument*

- Daily matching of GLIMR pixels with OCI normalized waterleaving radiance (nL_w)
 - e.g., 3x3 OCI pixel bins (~3.6x3.6 km)

. echnologies

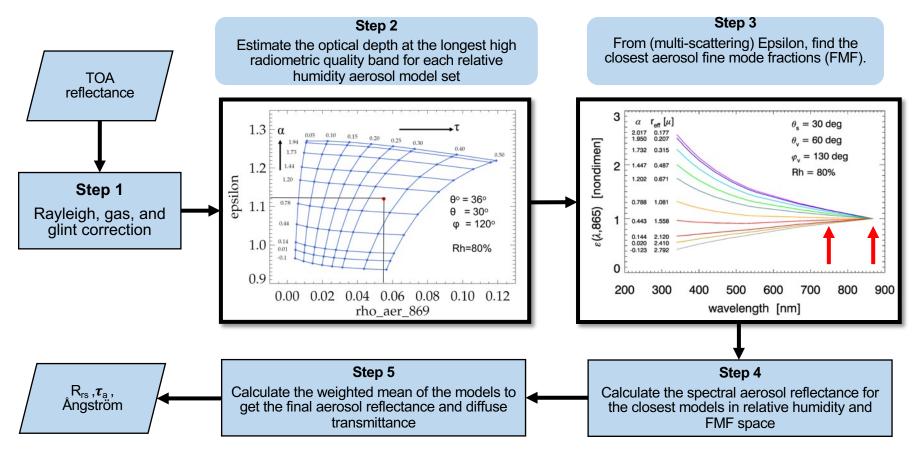
- Case 1 waters with depths greater than 1000 m; low AOT and Chla; homogeneous AOT and Chl-a
- Inverse processing of GLIMR (L2 to L1B) to bring OCI nL_w to the TOA and output modeled pixel Stokes vectors, [L_t, Q_t, U_t, 0]^T, at GLIMR wavelengths and GLIMR solar and viewing geometries.
 - Band radiances adjusted to match GLIMR bands
 - BRDF effects are accounted for in the propagation of the radiances from OCI to GLIMR viewing and path geometries
- Screen TOA pixels (following quality criteria) and generate datasets of radiance pairs [L_t, Q_t, U_t, 0]^T; L_m^G) and ancillary information, detector element and time, geographic coordinates, solar and viewing geometries, and glint reflectance.
- > Derive M_{11} , M_{12} , and M_{13} per band and detector element.
 - Compute ratio L_t / L_m^G to derive the cross-/vicarious gain coefficients (K1) per band

* Kwiatkowska, Franz, Meister, McClain, & Xiong (2008). Cross calibration of ocean-color bands from Moderate Resolution Imaging Spectroradiometer on Terra platform," Appl. Opt. 47, 6796-6810.


 L_m^G = actual GLIMR TOA radiances

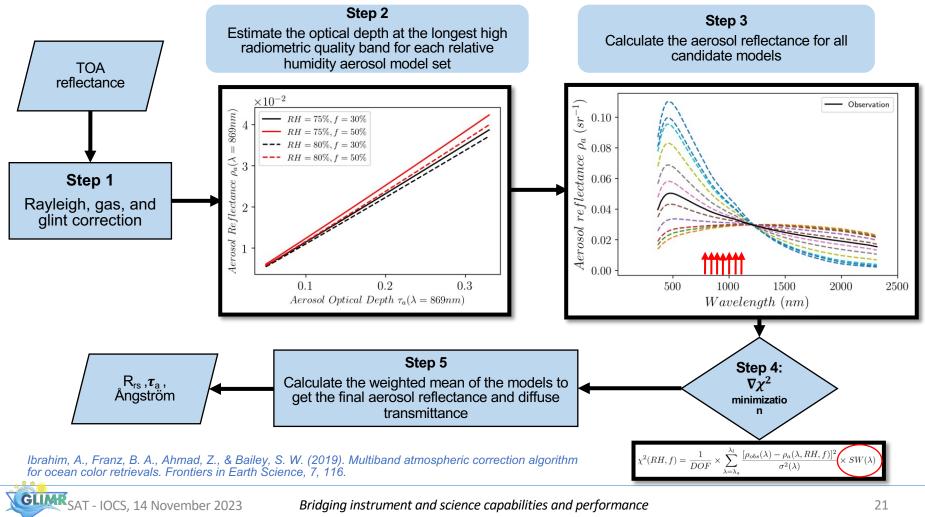
On-Orbit Calibration approach with OCI understood and mature

Spectral Response Trending



- Potential change in dispersion over time on orbit. Use emission and absorption lines to track any changes
 - 1. Fraunhofer solar emission lines:
 - Will use at least two lines
 - 434.048 nm (Hg), 588.997 nm (Na D₂), 656.281 nm (Ha), 866.217 nm (Ca II)
 - 2. Atmospheric absorption lines:
 - 686.719 nm (O₂ B), 759.370 nm (O₂ A), 822.696 nm (O₂ Z), 898.765 nm (O₂ y)

Multi-Scattering Epsilon (MSEPS)



Ahmad, Z. and B. Franz (2018), Uncertainty in aerosol model characterization and its impact on ocean color retrievals, in PACE Technical Report Series, Volume 6: Data Product Requirements and Error Budgets (NASA/TM-2018 - 2018-219027/ Vol. 6)

GLIMR SAT - IOCS, 14 November 2023

Raytheon Technologies Multi-Band Atmospheric Correction (MBAC)

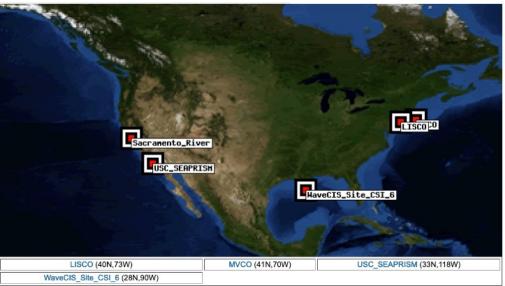
NH

- extend MBAC to utilize UV spectral range in UV-dark waters
- include gas absorption in Rayleigh/aerosol LUTs to capture coupling
- include wind speed-dependent glint model in Rayleigh/aerosol LUTs
- improve correction for bi-directional reflectance (BRDF) Twardowski M, Tonizzo A. Ocean Color Analytical Model Explicitly Dependent on the Volume Scattering Function. Applied Sciences. 2018; 8(12):2684. https://doi.org/10.3390/app8122684.
- implement ocean-atmosphere simultaneous retrieval (UV-VIS-NIR-SWIR) Ibrahim, A., B.A. Franz, A.M. Sayer, K. Knobelspiesse, M. Zhang, S.W. Bailey, L.I.W. McKinna, M. Gao, and P. J. Werdell, "Optimal estimation framework for ocean color atmospheric correction and pixel-level uncertainty quantification," Appl. Opt. **61**, 6453-6475 (2022).

Approaches to Accomplish Vicarious Calibration (K1)

- Heritage MOBY approach in situ instrumentation at appropriate field site(s) (e.g., Eplee et al. 2001; Franz et al. 2007; Zibordi & Melin 2017)
 - PACE vicarious calibration site or instrumentation (MarONet; HyperNAV)
- Alternate field site/instrumentation (e.g., Bailey et al. 2008; Zibordi et al. 2015)
 - AERONET-OC data; extrapolate spectrally
 - Hyperspectral sensors: in-water or above-water
 - HypSTAR in development at Tartu with ESA funding
 - Existing COTS with more extensive lab and field calibration
- Ocean surface reflectance model (Werdell et al. 2007)

GLIMR SAT - IOCS, 14 November 2023


Ocean color satellite climatology of South Pacific waters (Franz et al. 2007; Concha et al. 2019)

Many options available to vicariously calibrate GLIMR

AERONET-OC – radiometric calibration alternative G

SWRI SW

- AERONET and –OC are NASA-funded programs
- Bands: 400, 412.5, 442.5, 490, 510, 560, 620, 665, and 667 nm
- Additional bands at 709, 865, and 1020 nm for quality checks, turbid water flagging, and for the application of alternative above-water methods (Zibordi et al. 2002).
- Most useful sites for GLIMR
 - WaveCIS in Gulf of Mexico
 - USC off southern California
 - MVCO Cape Cod

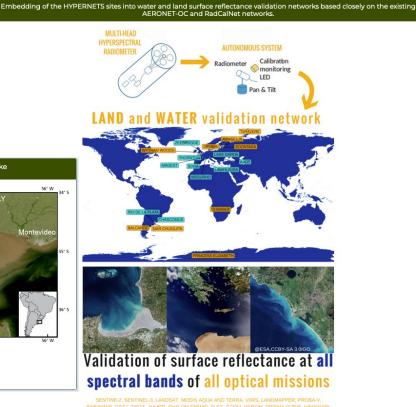
https://aeronet.gsfc.nasa.gov/new_web/ocean_color.html

Reytheon Technologies HYPERNETS – on-orbit calibration/validation alternative

- Planned "new hyperspectral radiometer integrated in automated networks of water and land bidirectional reflectance measurements for satellite validation"
- Consortium of institutions coordinated by RBINS (Royal Belgian Institute for Natural Sciences)
- Funded by EU Horizon 2020

http://www.hypernets.eu/from_cms/summary

WATER SITE - Rio de la Plata



Fishermen pier in extremely turbid waters. Coordinator: CONICET Coordinates: 34.560865 S and 58.39881167 W.

GLIMR

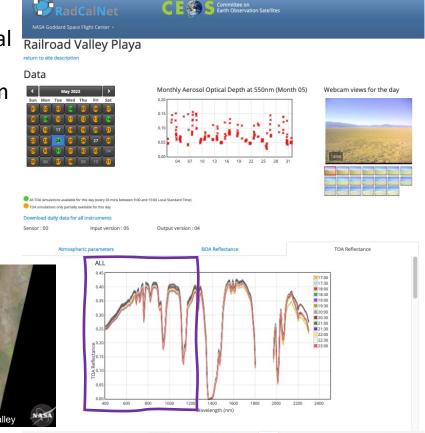
Shallow extremely turbid inland water site. Coordinator: CONICET Coordinates: 35.58281326 S and 58.02024078 W

- Radiometric Characterization and Calibration of Landsat and portable to GLIMR
 - Derive surface spectral reflectance following established methodology

Pseudo Invariant Calibration Sites (PICS)

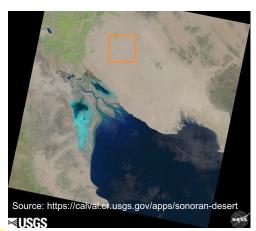
- Essentially invariant over time
- Are spatially very uniform, have stable spectral responses over time
- Atmospheric effects on upwelling radiance is minimal due to high surface reflectance
- Are in regions where rainfall is extremely limited:
 - Prevents vegetative growth
 - Very sparse human populations

RadCalNet – source of TOA radiances for calibration



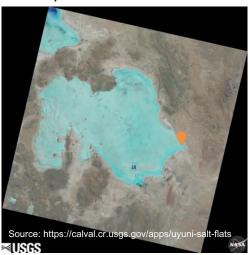
- > TOA reflectance
 - at 30 min intervals from 9 am to 3 pm local time
 - Hyperspectral at 10 nm steps from 400 nm to 2500 nm
- Railroad Valley Playa
 - 15 x 15 km useable area
 - 38.50° N, 115.69° W
 - AERONET & RadCalNet

https://www.radcalnet.org/#!/



NPLØ

Contact Adm


- Landsat; AERONET systems
- Lunar Lake Playa, Nevada
 - Dry lake bed; <0.5% reflectance variance
 - 1.5 x 2.5 km usable area
 - 38.4° N, 115.99° W
- Sonoran Desert, Mexico
 - spatially uniform
 - 15 x 15 km usable area
 - 32.35° N, 114.65° W

GLIMR SAT - IOCS, 14 November 2023

- Uyuni Salt Flats, Potosi, Bolivia
 - 25 x 25 km usable area
 - 20.38° N, 66.95 W

